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Abstract. We analyze the order-α2
s gluon initiated QCD corrections to semi-inclusive deep inelastic scat-

tering. We focus in the most singular pieces of these corrections and discuss the prescription of overlapping
singularities in more than one variable and their factorization.

1 Introduction

In recent years there has been an increasing interest in
semi-inclusive deep inelastic scattering (SIDIS), driven
both by crucial breakthroughs in the QCD description of
these processes [1,2,3] and also by the incipient availabi-
lity of data related to them [4].

Although QCD corrections to SIDIS are well known
at LO [2,3], until recently [5] no computations had been
done up to NLO accuracy, nor assessments of how relevant
the non homogeneous scale dependence, induced by frac-
ture functions in order to describe target fragmentation
processes, might be. In LO, non homogeneous evolution
effects are restricted to a relatively small kinematic re-
gion. This suggested to neglect these effects in many phe-
nomenological analyses of polarized SIDIS, leading baryon
production, and diffractive DIS [4].

In NLO the above mentioned kinematical restrictions
are no longer present, which in principle may lead to im-
portant corrections. From a theoretical point of view, the
computation of the SIDIS NLO corrections, and specifi-
cally the explicit check of factorization of collinear sin-
gularities involve also some subtleties which need close
attention. At variance with the totally inclusive case, for
the computation of the SIDIS NLO corrections it is ne-
cessary to keep additional variables unintegrated. This
leads to entangled singularities in more than one variable
which requires a detailed analysis of the singularity struc-
ture characteristic of the process and special prescription
techniques+[5].
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2 Kinematics

The cross section for a one-particle inclusive process in
which a lepton scatters off a nucleon and a hadron is tag-
ged in the final state can be written as [2]

dσ

dxB dy dvh dwh
=
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where in addition to the usual DIS variables xB and y, we
introduce energy and angular variables

vh =
Eh

E0(1 − xB)
wh =

1 − cos θh

2
. (2)

Eh and E0 are the energies of the final state hadron and of
the incoming nucleon in the P+q = 0 frame, respectively.
θh is the angle between the momenta of the hadron and the
virtual photon in the same frame. The variable u is related
to the fraction of momentum of the incoming parton ξ by
ξ = xB/u, while vj and wj are the partonic analogs of vh

and wh.
The first term in (1), contain the partonic cross sec-

tion which develop forward collinear singularities (wh = 1)
that can not be factorized in the usual partonic densi-
ties and fragmentation functions fi/P and Dh/j , respec-
tively. This divergences are factorized into fracture func-
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tions Mi,h/P and lead to their non homogeneus scale de-
pendence.

∂ Mi,h/P (ξ, ζ, Q2)
∂ log Q2 =
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The first order corrections to the one-particle inclusive
cross section can be found in [2].

3 O(α2
s) corrections

At O(α2
s), the integration over the spectator partons [7]

leads to a rich variety of singularities in the (u, v, w) space,
regulated by the parameter ε. As it is standard in this kind
of calculations, these singularities should be prescribed in
order to get a series expansion in powers of ε suitable for
making explicit their cancellation. These cancellations are
performed by coupling constant renormalization for the
UV singularities, by cancellations between virtual and real
contributions for the soft ones, and by renormalization of
parton densities, fragmentation and fracture functions in
the collinear case. However, in the one-particle inclusive
case, the structure of the singularities is much more com-
plex than in the inclusive case, mixing the three variables
and consequently the standard prescription

(1 − u)−1+ε ≡ 1
ε

δ(1 − u) +
(

1
1 − u

)

+u[0,1]
+ O(ε) , (4)

is no longer adequate. Indeed, it leads to double counting
of the double poles and ill defined terms in the expansion.
In Fig. 1 we show the curves along which the singularities
in the regions B0 = {u ∈ [xB , xu], v ∈ [vh, a], w ∈ [0, 1]}
and B1 = {u ∈ [xB , xu], v ∈ [a, 1], w ∈ [0, wr]} with xu =
xB/(xB+(1−xB)vh) and wr = (1−v)(1−u)xB/v(u−xB),
appear in the v-w plane after the angular integration is
performed.

The prescription of overlapping divergences in these
regions can be done using the modified prescription [5]
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r 2F1
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)
+w[0,1] (5)

Fig. 1. Position of the singularities in the v-w plane for xB ≤
u ≤ xu. The bold lines represent the curves where the hadronic
tensor becomes singular

and with a similar recipe for B1 = {u ∈ [xB , xu], v ∈
[a, 1], w ∈ [0, wr]} [5].

4 Factorization

Once the renormalization of the coupling constant, and
that for parton densities and fragmentation functions are
accomplished, the remaining singularities occur in the re-
gion B0 and are proportional to δ(1 − w), that is the for-
ward direction, so they have to be factorized into renor-
malized fracture functions. Otherwise, factorization would
be broken. The bare fracture functions can be written in
terms of renormalized quantities as:
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(6)

where the factorization scale has been chosen to be the
same for the three distributions. The functions ∆i←j and
∆ki←j are fixed in order to cancel all the remaining sin-
gularities in the cross section.

The non-homogeneous ∆ki←j for the case j = g, were
obtained in [5]. Explicitly:
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where
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ū

)
,

f(u, v) ⊗ g(v) =
∫ 1−u

u

v

dv̄

v̄
f(u, v̄)g

(v

v̄

)
, (10)

f(u, v) ⊗′ g(u) =
∫ 1−u v

u

dū
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The homogeneous kernels ∆i←j are the same that appear
in the inclusive case for parton densities and can be ob-
tained from the corresponding transition functions in [6].

5 Scale dependence

Figure 2 compares (for different values of ξ and ζ) the re-
lative size of the LO and NLO contributions to the non
homogeneous term in the evolution equation (3) computed
with standard sets of parton distributions [8] and fragmen-
tation functions [9] for the case i = q and h = π+. The
inset plots show the integral over Q2 of this contributions.
Notice that only those terms proportional to fg/P were ta-
ken into account in the O(α2

s) pieces. In [10] it was found
that the LO non homogeneous contribution falls rapidly
as ζ grows. This behavior is related to the shrinkage of
the integration region and with the fall of fragmentation
functions, Dh/i(z), in the limit z → 1.

This is also the case of the NLO contributions. At mo-
derate and large values of ξ (ξ ≥ 0.1) the O(α2

s) contri-
butions are typically one order of magnitude smaller than
the O(αs) ones so NLO and LO results differ only by a
few percents. This can be traced back to the extra power
of αs and the small size of the integration region since
the interval of the v integral in (3) shrinks to the point
(1−u)/u when ξ → 1−ζ. However, when ξ diminishes the
integration region expands and NLO contributions grow
considerably faster than the LO ones which are kinemati-
cally restricted to the curve v = (1−u)/u. The remarkable
growth of the O(α2

s) terms makes these contributions even
larger than the constrained O(αs) pieces at lower values
of ξ and thus a priory non negligible in the evolution equa-
tions.
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Fig. 2. Non homogeneous contributions to the derivative of
Mq for different values of ξ and ζ. Inset plots show the integral
over Q2 of this contributions taking MN.H.

q (Q2
0) = 0 with Q0 =

1 GeV as a reference

Of course, in order to assess the actual relevance of
the NLO non homogeneous effects in the full evolution of
fracture functions, one needs a realistic (based on actual
data) estimate for the size and shape for these functions
at a given scale, and compute the evolution taking into
account all the appropriate kernels, but our present re-
sults suggest that non homogeneous NLO effects could be
relevant.
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